BRIEF COMMUNICATION

Synthesis of LaMnO_{3+δ} by Firing Gels with Poly(Acrylic Acid) in a Pure Argon Stream

Hideki Taguchi,¹ Akio Sugita, and Mahiko Nagao

Research Laboratory for Surface Science, Faculty of Science, Okayama University, Okayama 700, Japan

Received September 26, 1995; accepted October 19, 1995

Perovskite-type LaMnO_{3+δ} was synthesized by firing the gels with 0.007–0.033 *M* of poly(acrylic acid) (PAA) in a pure argon stream. The oxygen content, crystallite size (D_{024}), specific surface area, and catalytic activity for CO oxidation on LaMnO_{3+δ} were measured to characterize the LaMnO_{3+δ} surface. In spite of a small specific surface area, the catalytic activity for CO oxidation on LaMnO_{3+δ} fired in the pure argon stream is twice that on LaMnO_{3+δ} fired in air. These results indicate that firing the gels in the pure argon stream improved the crystallinity (regularity of the ions) of the LaMnO_{3+δ} surface. © 1996 Academic Press, Inc.

INTRODUCTION

Perovskite-type LaMnO_{3+ δ} is available to be used as a catalyst that oxidizes hydrocarbons or carbon monoxide (CO) oxidation (1–3). LaMnO_{3+ δ} is generally synthesized at high temperature using a standard ceramic technique. Therefore, the specific surface area of LaMnO_{3+ δ} is less than 5 m²/g (2–3). By using poly(acrylic acid) (PAA), Taguchi *et al.* synthesized LaMnO_{3+ δ} with a large specific surface area and defined the conditions to synthesize LaMnO_{3+ δ} in air (4). They measured the La/Mn ratio, specific surface area, and catalytic activity for CO oxidation on LaMnO_{3+ δ} in order to characterize the LaMnO_{3+ δ} surface (5).

PAA is an important chemical to make a gel from the solution, and to provide the heat of combustion for the synthesis of LaMnO_{3+ δ}. From the results of differential thermal analysis (DTA) of the gel, the gel gave the exthothermic peaks in the temperature range from 160 to 300°C, and these peaks correspond to the combustion of PAA (6). Because of the rapid combustion of PAA, the crystal structure of LaMnO_{3+ δ} becomes orthorhombic. The rapid changes in temperature cause many cracks in LaMnO_{3+ δ},

resulting in a large specific surface area. Recently, we measured both the catalytic activity for CO oxidation and the amount of adsorbed oxygen on $(La_{1-x}Sr_x)MnO_3$ synthesized using PAA and the solid-state reaction (7). Then, it is apparent that the surface of the samples firing the gels using PAA has an insufficient crystallization and is lacking in adsorption sites in comparison with the samples synthesized using the solid-state reaction.

In order to improve the LaMnO_{3+ δ} surface, it is necessary to control the combustion of PAA. In the present study, we tried to synthesize LaMnO_{3+ δ} by firing the gels in a pure argon stream. Thereafter, the crystal structure, oxygen content, crystallite size, specific surface area, and catalytic CO oxidation on LaMnO_{3+ δ} were measured. These results will provide some information about the stability of LaMnO_{3+ δ} synthesized in the pure argon stream and the crystallinity (regularity of the ions) on the LaMnO_{3+ δ} surface.

EXPERIMENTAL

The preparation of the gels using PAA has been described in detail elsewhere (4). Average molecular weight of PAA was 2000. In the present study, the PAA concentration was from 0.007 to 0.033 M. The gels were fired at 400–900°C in the pure argon stream for 6 h. The heating rate was 1°C/min up to 300°C, and then 10°/min.

The crystal phases of the samples were identified by Xray powder diffraction (XRD) using monochromatic CuK α radiation. The oxygen content in each sample was determined by an oxygen-reduction (redox) method (8). The crystallite size (D_{024}) of the samples was calculated from the half-width of a diffraction peak (024) using Scherrer's equation (9). The specific surface area of the samples was determined by the BET method for nitrogen adsorption. The catalytic activities for CO oxidation were measured at 195 to 300°C using a conventional flow system. The samples (0.1 g) were preheated at 300°C in a pure oxygen

¹ To whom correspondence should be addressed.

FIG. 1. The relationship between the crystal structure of the samples and the synthesis condition (PAA concentration and firing temperature). The samples were synthesized by firing the gels for 6 h in a pure argon stream. (\bigcirc ; hexagonal LaMnO_{3+ δ}; \triangle , a mixture of hexagonal LaMnO_{3+ δ} and La₂O₃; ×, amorphous).

stream for 3 h. A mixed gas of CO (1.0%), O_2 (2.0%), and He (balance) was fed in a flow reactor at a flow rate of 150 cm³ · min⁻¹. The products were analyzed by gas chromatography using a column (Molecular Sieve 5A) kept at 50°C during the measurements.

RESULTS AND DISCUSSION

Figure 1 shows the relationship between the crystal structure of the samples and the synthesis conditions (PAA concentration and firing temperature) in the pure argon stream. From the XRD patterns, it is obvious that the sample fired at low temperature is amorphous or is a mixture of hexagonal LaMnO_{3+ δ} and La₂O₃. In the concentration range from 0.007 to 0.033 *M* of PAA, the sample fired at high temperature is indexed as a hexagonal perovskitetype structure. The region for the formation of LaMnO_{3+ δ} in the pure argon stream is wide in comparison with the region for the formation of LaMnO_{3+ δ} in air (4).

Table 1 shows the oxygen content $(3 + \delta)$ of LaMnO_{3+ δ} fired in the pure argon stream. From the results of Fig. 1, it is obvious that firing temperature in the pure argon stream is higher than the firing temperature in air. When the gels are fired in air, the oxygen content of LaMnO_{3+ δ} increases with increasing firing temperature (4). However, the oxygen content of LaMnO_{3+ δ} fired in the pure argon stream is ca. 3.18–3.21 and is independent of the synthesis condition. Table 1 also shows the crystallite size (D_{024}) and the specific surface area (S) of LaMnO_{3+ δ} for gels fired in the pure argon stream. D_{024} increases with increasing PAA concentration and firing temperature. Although we can not understand the reason why the specific surface area of

TABLE 1

Oxygen Content $(3 + \delta)$, Crystallite Size (D_{024}) , Specific Surface Area (S), and Rate of Reaction (R) of LaMnO_{3± δ} for the Oxidation of CO at 270°C

Firing condition						
PAA Concentration (%)	Temp. (°C)	Atmosphere	$3 + \delta$	D ₀₂₄ (nm)	<i>S</i> (m ² /g)	$\frac{R}{(\mathrm{cm}^3\cdot\mathrm{min}^{-1}\cdot\mathrm{m}^{-2})}$
0.007	700	Ar	3.20	18.8	21.1	0.54
0.020	700	Ar	3.21	25.5	11.4	0.44
0.033	700	Ar	3.18	25.5	16.7	0.43
0.007	900	Ar	3.20	25.5	9.2	0.22
0.020	900	Ar	3.18	33.3	4.8	0.48
0.020	700	Air	3.18	18.0	23.5	0.21
0.020	900	Air	3.18	31.5	5.4	0.22

LaMnO_{3+ δ} for the gel fired with 0.020 *M* of PAA at 700°C is very low, other values of the specific surface area decrease with increasing the PAA concentration and firing temperature. The variation in D_{024} and the specific surface area suggests the increase in the particle size of LaMnO_{3+ δ}.

In order to investigate the stability of LaMnO_{3+ δ}, LaMnO_{3+ δ} was fired at 700°C for 6–36 h in the pure argon stream. Figure 2 shows the XRD patterns of LaMnO_{3+ δ} for the gel fired with 0.020 *M* at 700°C for 6, 12, 24, and 36 h. The XRD patterns of LaMnO_{3+ δ} fired for 12, 24, and 36 h were indexed as the hexagonal perovskite-type structure (10). The diffraction peaks (300), (214), (220), and (208) were observed in hexagonal LaMnO_{3+ δ} fired for 6 h. With increased firing time, the intensity of the peak (018) decreased the peaks (400) and (224) became one broad peak. The slight decrease in 2 θ of each peak indicates

FIG. 2. XRD patterns of a LaMnO_{3+ δ}-fired gel with 0.020 *M* at 700°C for 6, 12, 24, and 36 h in a pure argon stream.

the increase in the cell constant with increasing firing time. From these results, it is obvious that hexagonal LaMnO_{3+ δ} fired at 700°C for 6–36 h in the pure argon stream is stable.

The conversion from CO to CO_2 was measured for LaMnO_{3+ δ} fired in the pure argon stream. The rate of reaction (*R*) at a given temperature is calculated using the following equation:

$$R = \frac{F \times C \times C_{\rm V}}{m \times S},$$

where *F* is the gas flow per minute, *C* the initial concentration of CO, C_V the conversion per gram from CO to CO₂, *m* is the mass of the sample, and *S* is the specific surface area of the sample (11). The rate of reaction at 270°C is shown in Table 1. Except the rate of reaction for LaMnO_{3+ δ} for the gel fired with 0.007 *M* of PAA at 900°C, the rate of reaction is ca. 0.43–0.54 cm³ · min⁻¹ · m⁻². The oxygen content, the crystallite size (D_{024}), the specific surface area, the rate of reaction of LaMnO_{3+ δ} for the gels fired in air are also shown in Table 1. The variation in D_{024} and the specific surface area suggests that the particle size of LaMnO_{3+ δ} increases with change in the atmosphere. The rate of reaction for LaMnO_{3+ δ} fired in air is ca. 0.21– 0.22 cm³ · min⁻¹ · m⁻², and this value is half of the rate of reaction for LaMnO_{3+ δ} fired in the pure argon stream (12).

The oxidation of CO occurs at the metal ions of the surface, and the catalytic activity is strongly influenced by both the metal ion content and the crystallinity of the surface (13). There are two kinds of oxygen at the surface; one is lattice-oxygen and the other is oxygen adsorbed on the metal ions. CO_2 is produced by the reaction of CO with oxygen adsorbed on the metal ions of the outermost surfce. After the desorption of CO₂ from the surface, oxygen is again adsorbed on the metal ions. When the gels were fired in air, the abrupt combustion of PAA made a large number of cracks in LaMnO_{3+ δ}. The low rate of reaction is due to the lack of the crystallinity or the adsorption sites. When the gels were fired in the pure argon stream, it is considered that the combustion of PAA was mild and oxygen was supplied from PAA. The nucleation of LaMnO_{3+ δ} occurred slowly and the crystallinity of the LaMnO_{3+ δ} surface was improved by firing the gels in the pure argon stream. Therefore, the atmosphere plays an important role in the control of the surface structure of LaMnO_{3+ δ}.

CONCLUSION

Perovskite-type LaMnO_{3+ $\delta}} was synthesized by firing the gels with 0.007–0.033$ *M* $of PAA in the pure argon stream. The variation in the crystallite size (<math>D_{024}$) and the specific surface area suggests that the particle size of LaMnO_{3+ δ} fired in the pure argon stream is larger than that of LaMnO_{3+ δ} fired in air. However, the rate of reaction for CO oxidation on LaMnO_{3+ δ} fired in air. These results indicate that the crystallinity of the LaMnO_{3+ δ} surface is easily improved by changing the firing condition.</sub>

REFERENCES

- 1. L. G. Tejuca, J. G. Fierro, and J. M. D. Tascon, Adv. Catal. 36, 237 (1989).
- 2. T. Nitadori, S. Kurihara, and M. Misono, J. Catal. 98, 221 (1986).
- 3. N. Mizuno, M. Tanaka, and M. Misono, *J. Chem. Soc. Faraday Trans.* **88**, 91 (1992).
- H. Taguchi, H. Yoshioka, D. Matsuda, and M. Nagao, J. Solid State Chem. 104, 460 (1993).
- H. Taguchi, H. Yoshioka, M. Nagao, and Y. Takeda, J. Solid State Chem. 116, 343 (1995).
- H. Taguchi, D. Matsuda, M. Nagao, K. Tanihata, and Y. Miyamoto, J. Am. Ceram. Soc. 75, 201 (1992).
- H. Taguchi, D. Matsuda, M. Nagao, and K. Tabata, J. Mater. Sci. Lett. 14, 12 (1995).
- N. Mizutani, A. Kitazawa, N. Okuma, and M. Kato, *Kogyo Kagaku Zashi* 73, 1097 (1970).
- B. D. Cullity, "Elements of X-Ray Diffraction," p. 102. Addison-Wesley, London, 1978.
- Y. Takeda, S. Nakai, T. Kojima, R. Kanno, N. Imanihi, G. Q. Shen, O. Yamamoto, M. Mori, C. Asakawa, and T. Abe, *Mater. Res. Bull.* 26, 153 (1991).
- Y. Ogino, T. Onoda, S. Shikagawa, M. Karube, Y. Saito, K. Tabe, T. Tamura, H. Matsumoto, M. Misono, and K. Yoshida, "Catalysis," p. 880. Muruzen, Tokyo, 1986.
- H. Taguchi, A. Sugita, M. Nagao, and K. Tabata, *J. Solid State Chem.* 119, 164 (1995).
- R. H. Voorhoeve, D. W. Johnson, J. P. Remeika, and P. K. Gallagher, Science 195, 827 (1977).